

TECHNICAL REPORT 3

S.T.E.P.S. Building Lehigh University Bethlehem, PA

Joseph S. Murray, Structural Option Faculty Advisor: Linda Hanagan September 17th, 2012 Lateral System Analysis

Lateral System Analysis

Joseph S. Murray

Table of Contents

Executive Summary	
Building Introduction	
Structural System	6
Floor System	6
Vertical Members	10
Foundation	10
Roof System	10
Lateral System	11
Design Codes	11
Design Loads	12
Live Loads	12
Dead Loads	13
Roof Live Load	13
Roof Dead Load	13
Roof Snow Load	14
Uniform Roof Snow Load	14
Drift Snow Load	14
Penthouse Live Load	14
Penthouse Dead Load	15
Brick Façade Load	15
Glass Curtain Wall Load	15
Penthouse Wall Load	15
Wind Pressures	16
Seismic Loads	18
Seismic Design Factors	19
Effective Seismic Weight	20
Seismic Design Loads	20
RAM Model	21
Center of Mass, Center of Rigidity	23
Load Combinations	24
Maximum Story Shears	24
Overturning Moment	25
Wind Load Cases	
Maximum Story Drifts	
Lateral Spot Checks	
Conclusion	

Lateral System Analysis

Joseph S. Murray

A-1	Floor Plans	35
A-2	Wind Calculations	37

Lateral System Analysis

Joseph S. Murray

Executive Summary

The S.T.E.P.S. Building in Bethlehem, PA sits on Lehigh University's campus. It is a mixed use facility consisting of laboratories, lecture halls, and faculty offices. The building is divided into two main wings which are bridged by a central atrium.

The structural system of the building consists of semi-rigid moment frames and full moment frames. It uses a composite floor as a rigid diaphragm to transfer lateral loads imposed on the façade to the beams and girders. The beams and girders then transfer these loads through their moment connections to a network of mainly W14 columns. The columns finally transfer the load into the soil through a combination of spread footings and mat foundations.

In order to better analyze the lateral force resisting structural system, a 3D model was produced in RAM Structural System. The model was constructed from the floor plans, specifications, and detailed drawings of the S.T.E.P.S. Building. All gravity and lateral members were appropriately sized according to the plans. RAM was used to check the center of mass and center of rigidity of each floor which were relatively close together. The RAM program checked for incidental torsional shear in the wind calculation based on this eccentricity.

To simplify the design and avoid error, only lateral loads were considered. This left the load combinations of 1.6W and 1.0E to be used in analysis. Based on the location and the seismic information on the structural drawings, wind controlled over seismic in all cases.

Story shears were checked using RAM and the results were used to check the overturning moment imposed on the building by the wind loads. This value was checked against the weight of the building multiplied by the eccentricity of the center of mass. The resisting moment was greater than the overturning moment, so uplift will not occur.

Four locations were chosen to check the wind drift limit of h/400. All of these locations passed for each story.

Two manual lateral spot checks were performed to assess the results of the computer program by hand. A braced frame and a moment frame were checked against the calculated drift from the RAM program. They were also checked for strength requirements according to a specification for the bracing on the drawings and against allowable moment in AISC 14th Edition.

Lateral System Analysis

Joseph S. Murray

Building Introduction

Lehigh University envisioned the Science, Technology, Environment, Policy, and Society (S.T.E.P.S.) Building as a way to attract new students and retain existing students in the science and engineering fields. A picture of the building is in Figure 1. The university lacked a modern laboratory building with all the amenities that have come with increases in technology over the years. In an interesting and experimental fashion, the departments have been intermixed by Health, Education & Research Association, Inc. They believe it will lead to increased communication and collaboration among faculty and researchers of various disciplines.

Figure 1: South Façade

Image Courtesy of Lehigh University

Lateral System Analysis

Joseph S. Murray

The building is oriented on the corner of East Packer Ave. and Vine St. as shown in Figure 2. The streets do not intersect at a 90 degree angle. The architects decided to use site lines to orient the building, which led to the nonlinear shape of the façade along Vine St.

Figure 2: Site Plan

Image Courtesy of BCJ Architects

Lehigh University slowly purchased the properties which were on the building site as they planned for a building to be put there. The location was ideal for expanding campus activities close to the campus core. This is shown in Lehigh's Campus Master Plan of 2000 in Figure 2.

Lateral System Analysis

Joseph S. Murray

Figure 2: Campus Master Plan

Image Courtesy of Lehigh University

The building is also connected to an existing structure through the use of a raised pathway that is enclosed. This further encourages interconnectivity between faculty, researchers, and students, because the adjoining building contains part of the College of Social Sciences. Between this adjacent building and S.T.E.P.S., there is a large open lawn. The university made a significant effort to maintain this lawn for extracurricular activities such as frisbee, croquet, and football. The S.T.E.P.S. Building is divided into three wings for the purpose of this analysis. These wings are diagramed in Figure 3.

Lateral System Analysis

Joseph S. Murray

Figure 3: Wings A, B, and C of S.T.E.P.S. Building

Image courtesy of Bing.com

Wing A is a one story structure with a lounge and entryway. It has raised clearstories to allow for natural daylight to illuminate the space. It also has a 12" deep green roof supported by structural wood which helped in earning LEED Certification. The building is LEED Gold certified by the United States Green Building Council (USGBC). Because of its limited building height, Wing A will not be analyzed in this report.

Wing B is a four story steel framed structure oriented along Packer Ave. There is a large atrium with lounge areas connecting Wing B to Wing C on each floor. Wing C is also steel framed and is 5 stories.

The gravity and lateral load resisting elements continue uninterrupted through the atrium. As a result, Wing B and Wing C will be treated as one building. The building's lateral system consists of moment connections between columns and beams throughout the building.

Sustainable features of the building include the green roof, high-efficiency glazing, sun shading, and custom mechanical systems.

Lateral System Analysis

Joseph S. Murray

Structural System

Figure 4: Typical Building Floor Plan

For a full floor plan, see Appendix A-1.

Floor System

There is a composite steel deck floor system in place for all floors in Wings B & C above grade. Basement floors are slab on grade.

Along Vine St., which will be considered the longitudinal direction of the building, typical girders have a center to center span of 21'-4" with one intersecting beam at their midpoint. The transverse beams which run parallel to Packer Ave. have a span anywhere from 36'-11" to 42'8".

The decking is a 3" deep 18 gauge steel deck with 4-1/2" normal weight concrete topping and welded wire fabric. The bulk of the decking is run longitudinally throughout Wings B & C and has a span of 10'8" between beam centerlines. The exceptions to this are two bays to the very south of Wing B along Packer Ave. These bays are oriented transversely. The total thickness ends up being 7-1/2" with a 6x6" W2.9 x

Lateral System Analysis

Joseph S. Murray

W2.9 welded wire fabric embedded ¾" from the top of the slab. Figure 5 shows a typical detail of the composite floor decking.

Figure 5: Composite Floor Deck Detail

NOTE: PROVIDE DIAGONAL #5 X 6'-0" LONG AT RE-ENTRANT CORNERS CENTER BAR ON CORNER

The floor system is supported by wide flange beams designed as simply supported. A combination of full moment connections, semi-rigid moment connections, and shear connections are used. Typical sizes for transverse beams are W24x55 and W24x76. The girders are W21x44. Most beams have between 28 and 36 studs to transfer shear. Figure 5 shows a typical Full Moment Connection with field welds noted. Figure 6 shows the entirety of the first floor system for Wing B. Figure 8 shows the entirety of the first floor system for Wing C.

Vertical Members

Wide flange columns are used throughout the building for gravity loads. They are arranged for strong axis bending in the transverse direction. Most spans have a column at either end with another at the midpoint.

W14 is the most common section size with weights varying from W14x90 all the way up to W14x192 on the lower floors.

Foundation

Schnabel Engineering performed a geotechnical analysis of the site in 2007. This concluded that the soil had sufficient bearing capacity to support the loads from the building.

Interior columns are supported by a mat foundation 18' wide and 3'-6" deep shown in Figure 6 and Figure 7. Exterior columns bear on square footings ranging from 11'x11' to 16'x16' with depths from 1'6" to 2'. These are tied into the foundation by base plates with concrete piers.

Lateral System Analysis

Joseph S. Murray

Figure 6: Mat Foundation Plan View

Figure 7: Mat Footing Schedule

		a	
MF1	₩ X 18'-0" X 3'-6"	#9 @ 12" O.C. E.W. BTM #9 @ 12" O.C. LONG, TOP #7 @ 12" O.C. TRANS, TOP	SEE PLAN FOR LENGTH

The reinforced foundation walls have strip footings ranging from 2' to 6' wide with depths between 1' and 2'. These are monolithically cast with the piers for the exterior columns.

Roof System

10

The roof decking consists of a 3" 16 gauge steel roof deck with a sloped roof for drainage. Topping ranges from $\frac{1}{2}$ " to 4-1/2" to achieve a $\frac{1}{2}$ ":1' slope. Therefore, total thickness ranges from 3-1/4" to 7-1/2". Framing is similar to floor framing with wide flanges ranging from W24x55 to W24x68.

Lateral System Analysis

Joseph S. Murray

The floor system has increased loads where the mechanical penthouses are situated. The penthouse itself is framed with square HSS tubing. Heavier W27x84 wide flange beams support this area.

Lateral System

The building resists lateral loads by moment connections at the beam to column locations. They are continuous throughout the building and beams are designed as simply supported for gravity loads. The moment connections are designed only to take lateral loads. A typical full moment connection is shown in Figure 8. Many of these moment connections are semi-rigid connections to give the system more flexibility. An example of layout of the two types of moment connections in the floor plan is shown below in Figure 9. The triangles are full moment connections and the dots are semi-rigid.

Figure 8: Typical Full Moment Connection

Lateral System Analysis

Joseph S. Murray

Figure 9:

The lateral loads seen in the Penthouse are going to be the greatest based on height. At the highest Penthouse roof level, there are moment connections in the transverse direction and single angle braced frames in the longitudinal direction. The connections to the roof of the building are rigidly connected to the roof framing members. These members then transfer the load to flexible moment connections in the columns supporting the roof. These roof members are a larger W27x102 compared to adjacent members such as W24x68 or W27x84.

Design Codes

The primary design code used to construct the S.T.E.P.S. Building was the Pennsylvania Uniform Construction Code (PUCC). The PUCC is the primary code adopted by the city of Bethlehem, Pennsylvania. The PUCC is based on the International Code Council (ICC). When design was completed in 2008, the 2006 PUCC referenced the following codes:

2006 International Building Code

2006 International Electrical Code

Lateral System Analysis

Joseph S. Murray

2006 International Fire Code 2006 International Fuel Gas Code 2006 International Mechanical Code ASCE 7-05, Minimum Design Loads for Buildings and Other Structures AISC Steel Construction Manual, 13th Edition ACI 318-05, Building Code Requirements for Structural Concrete ACI 530-05, Building Code Requirements for Masonry Structures

The primary codes employed in analysis were the AISC Manual and ASCE 7-05

Design Loads

Live Loads

Table 1: Live Load Values

Occupancy	Design Load on Drawings	ASCE 7-05 Load (Tables 4-1, C4-1)
Office	50 PSF	50 PSF + 20 PSF (Partitions)
Classroom	40 PSF	40 PSF
Laboratory	100 PSF	100 PSF
Storage	125 PSF	125 PSF
Corridors/Lobbies @ Ground Level	100 PSF	100 PSF
Corridors Above Ground Level	80 PSF	80 PSF

Dead Loads

Table 2: Calculated Dead Load

	Dimension	Unit Weight	Load (PSF)
3" 18 Ga. Composite			2.84
Deck			
4-1/2" Topping			75
Self-Weight			5
MEP Allowance			10
Ceiling Allowance			5
TOTAL			97.84 PSF

Lateral System Analysis

Joseph S. Murray

Roof Live Load

Table 3: Roof Live Load

Occupancy	Design Load on Drawings	ASCE 7-05 Load (Tables 4-1, C4-1)	Design Load
Roof	N/A	20 PSF	20 SF

Roof Dead Load

Table 4: Roof Dead Load

	Dimension	Unit Weight	Load (PSF)
3" 16 Ga. NS Roof Deck			2.46
3" Concrete Topping (Avg.)	0.290 CF/SF	150	43.5
Self-Weight			5
Roofing Allowance			10
TOTAL			60.96 SF

Roof Snow Load

Uniform Roof Snow Load

Table 5: Uniform Roof Snow Load

Design Factor	ASCE 7-05	Design Value
Snow Load (Pq)	Figure 7-1	30 PSF
Roof Exposure	Table 7-2	Fully Exposed
Exposure Type	Section 6.5.6.2	В
Exposure Factor (Ce)	Table 7-2	.9
Thermal Factor (Ct)	Table 7-3	1.0
Building Type	Table 1-1	111
Importance Factor (I)	Table 7-4	1.1
Flat Roof Snow Load (Pf)	Equation 7-1	20.8 PSF
Minimum Snow Load (Pf,min)	Section 7.2	22 PSF
Design Snow Load	Section 7.2	22 PSF

Pf = 0.7(Ce)(Ct)(I)(Pq)

Pf = 0.7(.9)(1.0)(1.1)(30) = 20.8 PSF

Lateral System Analysis

Joseph S. Murray

20.8 < Pf,min = 22 \rightarrow Use 22 PSF as the Design Snow Load

5.5.2 Drift Snow Load

NOTE: For simplification of this analysis, snow drift was not considered. However, because of the raised penthouses, it will be necessary to consider snow drift later.

Penthouse Live Load

Table 6: Penthouse Live Load

Occupancy	Design Load on Drawings	ASCE 7-05 Load (Tables 4-1, C4-1)	Design Load
Mechanical Room	N/A	200 PSF	200 PSF

Penthouse Dead Load

Table 7: Penthouse Dead Load

	Dimension	Unit Weight	Design Load (PSF)
3" 18 Ga. Composite			2.84
Deck			
4-1/2" Concrete			75
Topping			
Self-weight			5
MEP Allowance			10
Ceiling Allowance			5
TOTAL			97.84 PSF

Lateral System Analysis

Joseph S. Murray

Brick Façade Load

Table 8: Brick Façade Load (Per Level)

	Height	Unit Weight (PSF)	Design Load (PLF)
Brick Veneer	10'-3"	40	410
2" Rigid Insulation	10'-3"	1.5	15.375
Cold Formed Steel	10'-3"	1	10.25
Framing			
Gypsum Wall Board (5/8")	10'-3"	2.5	25.625
Window (Glass, Frame, Sash) (ASCE 7-05 Table C3-1)	5'-1"	8	40.8
TOTAL			502.1 PLF

Glass Curtain Wall Load

Table 9: Glass Curtain Wall Load (Per Level)

	Dimension	Unit Weight (PSF)	Design Load (PLF)
Window (Glass, Frame, Sash) (ASCE 7-05 Table C3-1)	15'-4"	8	122.4 PLF

Penthouse Wall Load

Table 10: Penthouse Wall Load

	Dimension	Unit Weight (PSF)	Load (PLF)
Metal Wall Panel	16'-4"	5	81.7
Steel Framing	16'-4"	2	32.7
Bracing Allowance	16'-4"	3	49
TOTAL			163.4 PLF

Lateral System Analysis

Joseph S. Murray

Wind Pressures

ASCE 7-05 was used for wind design. The Analytical Procedure in Chapter 6 is specifically what was instituted.

Table 11: Wind Design Factors:

Design Factor	ASCE 7-05	E/W Value	N/S Value
Design Wind Speed (V)	Figure 6-1C	90 mph	90 mph
Building Type	Table 1-1	III	III
Importance Factor (I)	Table 6-1	1.15	1.15
Exposure Type	6.5.6.2	Туре В	Туре В
Average Height (z)	6.5.8	84'	100'

Table 12: Design Wind Pressure by Level (Transverse Direction)

Level	Height	kz	qz	Pz (PSF) (Windward)	Ph (PSF) (Leeward)	Ptotal (PSF)
1	0'-0"	0.57	11.55	14.21	-18.18	25.47
2	15'-4"	0.58	11.76	14.46	-18.18	25.93
3	30'-8″	0.71	14.39	17.7	-18.18	31.73
4	46'-0"	0.79	16.01	19.69	-18.18	35.3
Roof/5th	60'-8"	0.85	17.22	21.18	-18.18	37.97
Roof/Penthouse	77'-0"	0.92	18.65	22.94	-18.18	41.12

Table 13: Design Wind Pressure by Level (Longitudinal Direction)

Level	Height	kz	qz	Pz (PSF) (Windward)	Ph (PSF) (Leeward)	Ptotal (PSF)
G	0'-0"	0.57	11.55	14.21	N/A	14.21
1	15'-4"	0.58	11.76	14.46	-14.67	23.33
2	30'-0"	0.70	14.4	17.70	-14.67	28.55
3	45'-4"	0.79	16.01	19.69	-14.67	31.76
4	61'-0"	0.85	17.23	21.19	-14.67	34.18
Roof/5th	77'-4"	0.92	18.65	22.94	-14.67	37.00
Roof/Penthouse	92'-0"	0.96	19.46	23.94	-14.67	38.61

Lateral System Analysis

Joseph S. Murray

Seismic Loads

Chapters 11 and 12 of ASCE 7-05 were used for seismic load design. The Equivalent Lateral Force procedure tests whether the building has the capability of handling a seismic event based on site and building properties.

Hand calculations can be found in Appendix A-2.

Seismic Design Factors

Design factors were the same for transverse and longitudinal directions since the building's lateral framing system consists of moment frames in both directions. Instead of determining the actual fundamental frequency through extensive calculation, the approximate fundamental period was determined using ASCE 7-05 Section 12.8.2.1.

Table 14: Seismic Load Design Factors

Design Factor	ASCE 7-05	Value
Short Period Spectral	USGS	0.291
Response Acceleration (Ss)		
One Second Spectral	USGS	0.081
Response Acceleration (S1)		
Site Class	Table 11.4-1	С
Short Period Site Coefficient (Fa)	Table 11.4-2	1.2
Long Period Site Coefficient (Fv)	Equation 11.4-1	1.7
Adjusted MCE Short Period	Equation 11.4-1	0.349
Spectral Response		
Acceleration (Sms)		
Adjusted MCE One Second	Equation 11.4-2	0.138
Spectral Response		
Acceleration (SM1)		
Design Short Period Spectral	Equation 11.4-3	0.233
Response Acceleration (SMs)		
Design One Second Spectral	Equation 11.4-4	0.0918
Response Acceleration (SM1)		
Maximum Height from Base	N/A	108.3′
(hn)		
Approximate Period	Table 12.8-2	0.028
Parameter (Ct)		
Approximate Period	Table 12.8-2	0.8
Parameter (x)		

Lateral System Analysis

Joseph S. Murray

Approximate Fundamental Period (Ta)	Equation 12.8-7	1.19 Hz
Building Type	Table 1-1	111
Importance Factor (I)	Table 11.5-1	1.25
Seismic Design Category	Table 6-2	В
Response Modification Coefficient (R)	Table 12.2-1	3.0
System Over-strength Factor (Omega)	Table 12.2-1	3.0
Deflection Amplification Factor (Cd)	Table 12.2-1	3.0
Flexible Diaphragm Condition	Section 12.3.1	Rigid
Long Period Translation Period (TL)	Figure 22-15	6
Seismic Response Coefficient (Cs)	Equation 12.8-3	0.0321

Effective Seismic Weight

Table 15: Effective Seismic Weight by Level

Level	Floor Area (SF) (96 PSF)	Roof Area (SF) (62.5 PSF)	Penthouse Floor Area (SF) (296 PSF)	Brick Façade (ft.) (510.6 PLF)	Glass Curtain Wall (ft.) (122.4 PLF)	Penthouse Wall (ft.) (246 PLF)	Effective Seismic Weight (k)
Penthouse		4497					281.06
Roof/Pent		7894	4497			288.7	1895.5
house							
5	10832	9375	1557	421.3		161.3	2341.47
4	21814			589.7	89.5		2406.2
3	21814			589.7	89.5		2406.2
2	21814			589.7	89.5		2406.2
1	21814			589.7	89.5		2406.2
TOTAL	98088	21766	6054	2780.1	358	450	14143

Lateral System Analysis

Joseph S. Murray

Design Seismic Loads

Table 16: Seismic Design Loads by Level

Level	Effective Seismic Weight (wx)	Height from Base (hx)	(wxhx) ^k	Vertical Distribution Factor (Cvx)	Lateral Seismic Force (Fx) (k)	Seismic Design Story Shear (Vx) (k)	Overturning Moment (k- ft.)
Penthouse	281.06 k	108.3'	3298348	0.0654	29.97	29.97	3217.11
Roof/Penthouse	1895.5 k	93'	16390547	0.3250	147.57	177.54	13724.53
5	2341.47 k	76.7'	13763837	0.2729	123.92	301.46	9501.36
4	2406.2 k	61.3'	9050606	0.1794	81.48	382.94	4997.72
3	2406.2 k	46'	5091519	0.1009	45.84	428.78	2108.76
2	2406.2 k	30.7'	2263389	0.0448	20.37	449.15	625.02
1	2406.2 k	15.3′	565478	0.0112	5.09	454	78.05
TOTAL	14143 k		50423724	1.0			34252.54

Seismic Base Shear = 454 k

Overturning Moment = 34252.5 k-ft.

Calculations for the earthquake analysis can be made available upon request.

Lateral System Analysis

Joseph S. Murray

RAM Model

RAM Structural System was used to create a 3D model of the S.T.E.P.S. Building. Gridlines were produced from AutoCAD drawings, and line elements were used to build the framework for the lateral and gravity force resisting systems. Steel sections and member properties were added to the line elements as noted on the structural drawings. Any beams that had a moment connection were modeled as part of the lateral system along with 4 braces in the penthouse frames. The majority of the beams are W-flange members with HSS rectangular tubing used in some locations. The bracing utilized as part of the penthouse's lateral resisting system are L4x4x3/8 X-Bracing. Any columns which received a lateral beam were also modeled as part of the lateral system. The columns consist mainly of W14 sections with HSS rectangular tubing used for the penthouse columns. Some of the gravity beams terminated in a concrete basement wall, and an 18" thick reinforced concrete wall was modeled as shown on plan and in structural details. All exterior columns terminate in a spread footing foundation, while interior columns terminated in mat foundations.

The composite floor system that exists throughout the building was modeled as a rigid diaphragm on each floor level. Weight of steel members and the floor systems was calculated by RAM, and then the weight of the wall system was added manually to each floor based on the floor's perimeter and the weight of the wall attached. Figure 12 shows the RAM model in 3D from the west direction and Figure 13 shows it from the east direction. The red color represents lateral members, and the blue color represents gravity members. Figure 14 shows the braced frames in the penthouse in purple.

Figure 12: RAM Model (West Direction)

21

Figure 13: RAM Model (East Direction)

Lateral System Analysis

Joseph S. Murray

Figure 14: Penthouse Braced Frames

Lateral System Analysis

Joseph S. Murray

Center of Mass and Center of Rigidity

The center of mass (COM) and the center of rigidity (COR) were determined for each diaphragm by RAM. After visual inspection, the locations were confirmed, and analysis of the model proceeded. Figure 15 shows the center of mass and center of rigidity for the second floor. The COM is represented by a green circle at (38.45, 142.86), and the COR is represented by a purple circle at (40.84, 119.71).

Figure 15: Center of Mass and Center of Rigidity

Lateral System Analysis

Joseph S. Murray

Load Combinations:

The load combinations in ASCE 7-05 were considered in analysis. Figure 16 shows Table 2.3.2 from ASCE.

Figure 16: LRFD Load Combinations

2.3.2 Basic Combinations. Structures, components, and foundations shall be designed so that their design strength equals or exceeds the effects of the factored loads in the following combinations:

1. 1.4(D + F)2. $1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$ 3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.8W)$ 4. $1.2D + 1.6W + L + 0.5(L_r \text{ or } S \text{ or } R)$ 5. 1.2D + 1.0E + L + 0.2S6. 0.9D + 1.6W + 1.6H7. 0.9D + 1.0E + 1.6H

To simplify the analysis and limit errors, only combinations with wind or seismic were initially considered. Since the response of the lateral system is of primary concern in this analysis, gravity loads were not considered, and the load combinations were reduced to either 1.6W or 1.0E.

Wind load cases were considered from the ASCE 7-05 Main Wind Force Resisting System method (Method 2). These can be found in Figure 17.

After running the analysis for wind and viewing the story displacements from RAM, it was determined that Case 1 controlled for wind in both the x and y direction of the S.T.E.P.S. Building. All other wind cases were removed from consideration as the applied eccentricity did not produce a greater wind load.

Earthquake was checked by RAM for an Sds of 0.233 as specified by the structural drawings. Wind controlled in both directions for every story.

Story Shears

Story shears were checked using RAM based on the controlling wind cases. The maximum story shears in the x direction are in Figure 17, and the maximum story shears in the y direction are shown in Figure 18.

Lateral System Analysis

Joseph S. Murray

Figure 17: Maximum Story Shears in the X Direction

Summary - Total Story Shears				
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
Story 7	26.82	26.82	-0.00	-0.00
Story 6	99.67	72.85	0.42	0.42
Story 5	205.47	105.80	1.26	0.84
Story 4	322.11	116.65	0.54	-0.72
Story 3	433.07	110.95	0.08	-0.46
Story 2	533.24	100.17	-0.24	-0.32
Story 1	428.95	-104.28	5.35	5.58

Figure 18: Maximum Story Shears in the Y Direction

Summary - Total Story Shears				
Level	Shear-X	Change-X	Shear-Y	Change-Y
	kips	kips	kips	kips
Story 7	0.00	0.00	20.22	20.22
Story 6	-0.75	-0.75	66.20	45.98
Story 5	-1.49	-0.74	102.57	36.38
Story 4	-0.30	1.18	136.40	33.83
Story 3	-0.76	-0.45	167.89	31.49
Story 2	-0.11	0.65	197.08	29.18
Story 1	1.49	1.59	144.60	-52.47

Overturning Moment

The shears for each story in the x direction were multiplied by the height of each story to produce a total overturning moment of 31,528.5 k-ft.

The resisting moment was calculated by multiplying the weight of the building by the eccentricity of the center of mass. From previous calculations, the effective building weight is 14,143 kips. The center of mass is 38.45 feet from the edge of the building. This results in a resisting moment of 543,798 kip-ft. This is enough to handle the overturning moment produced by the controlling wind case

kips -0.00 0.42 0.84 -0.72 -0.46 -0.32 5.58

Lateral System Analysis

Joseph S. Murray

Figure 17: ASCE 7-05 Wind Load Cases

Lateral System Analysis

Joseph S. Murray

Maximum Story Drifts

RAM was used to determine the story drifts based on the controlling wind cases. Four points were chosen as control points to establish displacement and drift data show in Figure 18 as blue dots. Tables 17-20 show the results and compare to allowable drifts of h/400 as per ASCE 7-05. Some of the frames do not extend to levels 6 and 7 and are marked as "N/A". The story drifts passed all acceptable drift limits based on the RAM output and an acceptable drift of h/400.

Figure 18: Location of Control Points for Drift Analysis

Lateral System Analysis

Joseph S. Murray

Table 17: Maximum Lateral Displacements and Story Drifts (Column A-1)

Maximum Wind Story Drift, N-S Direction						
	Story	Story Drift (in)	Allowable Drift (in)	Adequacy		
Column A-1	7	N/A	3.24	ОК		
	6	-0.3066	2.78	ОК		
	5	0.1181	2.32	ОК		
	4	0.1708	1.86	ОК		
	3	0.1735	1.4	ОК		
	2	0.1755	0.94	ОК		
	1	0.105	0.48	ОК		
	Maximum	Wind Story Drift, E-W	/ Direction			
	Story	Story Drift (in)	Allowable Drift (in)	Adequacy		
Column A-1	7	N/A	3.24	ОК		
	6	0.1533	2.78	ОК		
	5	0.2713	2.32	ОК		
	4	0.4295	1.86	ОК		
	3	0.4525	1.4	ОК		
	2	0.4390	0.94	ОК		
	1	0.0270	0.48	ОК		

Table 18: Maximum Lateral Displacements and Story Drifts (Column B-6)

Maximum Wind Story Drift, N-S Direction						
	Story	Story Drift (in)	Allowable Drift (in)	Adequacy		
Column B-6	7	0.3288	3.24	ОК		
	6	-0.2756	2.78	ОК		
	5	0.1178	2.32	ОК		
	4	0.1705	1.86	ОК		
	3	0.1730	1.4	ОК		
	2	0.1744	0.94	ОК		
	1	0.0103	0.48	ОК		
	Maximum	Wind Story Drift, E-V	V Direction			
	Story	Story Drift (in)	Allowable Drift (in)	Adequacy		
Column B-6	7	0.3551	3.24	ОК		
	6	0.1755	2.78	ОК		
	5	0.1929	2.32	ОК		
	4	0.305	1.86	ОК		
	3	0.3245	1.4	ОК		
	2	0.2977	0.94	ОК		
	1	0.0178	0.48	ОК		

Lateral System Analysis

Joseph S. Murray

Table 19: Maximum Lateral Displacements and Story Drifts (D.5-14)

Maximum Wind Story Drift, N-S Direction						
	Story	Story Drift (in)	Allowable Drift (in)	Adequacy		
Column D.5-14	7	N/A	N/A	N/A		
	6	N/A	N/A	N/A		
	5	0.1179	2.32	ОК		
	4	0.1706	1.86	ОК		
	3	0.1731	1.4	ОК		
	2	0.1851	0.94	ОК		
	1	N/A	N/A	N/A		
Maximum Wind Story Drift, E-W Direction						
	Story	Story Drift (in)	Allowable Drift (in)	Adequacy		
Column D.5-14	7	N/A	N/A	N/A		
	6	N/A	N/A	N/A		
	5	0.1364	2.32	ОК		
	4	0.2346	1.86	ОК		
	3	0.2893	1.4	ОК		
	2	0.2315	0.94	ОК		
	1	N/A	N/A	N/A		

Table 20: Maximum Lateral Displacements and Story Drifts (E.5-12)

Maximum Wind Story Drift, N-S Direction						
	Story	Story Drift (in)	Allowable Drift (in)	Adequacy		
Column E.5-12	7	N/A	N/A	N/A		
	6	N/A	N/A	N/A		
	5	0.1181	2.32	ОК		
	4	0.1708	1.86	ОК		
	3	0.1735	1.4	ОК		
	2	0.1756	0.94	ОК		
	1	0.0105	0.48	ОК		
Maximum Wind Story Drift, E-W Direction						
	Story	Story Drift (in)	Allowable Drift (in)	Adequacy		
Column E.5-12	7	N/A	N/A	N/A		
	6	N/A	N/A	N/A		
	5	0.1685	2.32	ОК		
	4	0.2719	1.86	ОК		
	3	0.2975	1.4	ОК		
	2	0.2626	0.94	ОК		
	1	0.0155	0.48	ОК		

Lateral System Analysis

Joseph S. Murray

Lateral Spot Checks

Two spot checks were made where drift was the highest. One was made at the penthouse on story 7 in a braced frame system in the "Y direction". The braced frames are shown in purple in Figure 19. The other was made on the same level in the "X direction" of a moment frame. The moment frames are shown in red on Figure 19.

Figure 19: Braced Frames on Story 7

Both the braced frame and the moment frame systems on story 7 met drift requirements. They compared similarly to the drift values in the RAM output file. The braces, which were designed for a tension load of 20 kips were adequate for strength. The columns in the moment frame were adequate for flexure based on a tabulated value from AISC 14th Edition. The calculated results follow.

Lateral System Analysis

Joseph S. Murray

Lateral Spot Checks -Braced Frames at Story 7 Story Shear = 20.22 kips in Y direction *2 braced frames in System W21×44 20.22 - HSS 10×10×3/8 -15,33 L4×4×3/8 -20.5' . * Beam Joes not contribute Column Ix= 202 in significantly in this frame K= IZEI b3 Brace = AE LOSE $=\frac{12(29000)(202)}{\left[(15,33)(12)\right]^{3}}$ k= 11.29 K/in 15.33 $\theta = 36.79^{\circ}$ 20.5 $A = 2.86 in^{2}$ $K_{brace} = \frac{2.86(2900)}{(25.6)(12)} \cos^{2}(36.79) = 173.15 \, \text{K/in}$ Total Stiffness = 2 2(11.29) + 173,15 #frames = 391.46 K/in

Lateral System Analysis

Joseph S. Murray

 $\Delta = F/k = \frac{20.22}{391.44} = 0.0517 \text{ in}$ This is less than the value Calculated by RAM which was 0.0617in. However, it is still within allowable drift limit of 1/400 = 3.24" Plans called for braces to support 20 kips of tension. Alternatively, 20.22 K story shear /2 braces = 10.11 K 20 k > 10.11 k applied

Lateral System Analysis

Joseph S. Murray

. Moment Frames at Story 7 4 Moment Frames in system W24×55 >26.82 in X direction ~ H55 10× 10 × 3/8 15.33 43'-0" -> * P-Delta not sidered K= 11.29 K/in (4) 2 (11.29) = 90.32 K/in total stiffness # frames A= F/K = 26.82/90.32 A = 0.297''This is less than the value that RAM calculated which was 0.4665" They both pass drift requirements of 1/400 = 3,24" Alternatively, an unbraced HSSIOx10x3/8 can support AMn = 163 K-Pt 26.82 (15.33) = Mu = 411.15 8(+Mn) = 1304 K-Pt > Mu OK

Lateral System Analysis

Joseph S. Murray

Conclusion

The RAM model produced yielded some practical results which were backed up by the lateral spot check calculations. A computer program should never be trusted blindly; especially one complicated enough to perform structural analysis. It seems that in this case though, RAM Structural System performed a relatively accurate analysis that met strength and serviceability requirements established by code. The frames in the system met drift requirements from ASCE 7-05, and the behavior of the building seemed realistic.

P-Delta effects are something which will need to be considered in future analysis, as gravity loads were neglected. They could produce much larger deflections of columns yielding in much larger drifts.

Lateral System Analysis

Joseph S. Murray

Appendix A-1

Lateral System Analysis

Joseph S. Murray

Lateral System Analysis

Joseph S. Murray

Appendix A-2

ASCE 7-05: Section 6.5

V = 90 mph	(Figure 6-16)
Occupancy is 1490 > 500 for university, so TYPE III	(Table 1-1)
Importance TYPE III; V < 100 mph \rightarrow therefore, I = 1.15	(Table 6-1)
Roughness Type B (Urban/Suburban)	(Section 6.5.6.2)

Figure A1: Plan View

Figure A2: East Elevation

H = (154)(84') + (121.3)(65') = 78'(154+121.3)

N/S: L = 275.3'B = 86.9' H = 100' to be conservative

Lateral System Analysis

Joseph S. Murray

- Building Category = III (Table 1-1)
• Exposure = B (Urbans/Suburban) (6.5.16.2)

$$92 = 0.00256 K_2 K_2 K_3 V^2 I (Eq. 6-15)$$

• Determine Z for top Lavel:
 E/W N/S
 $Z = 77' 108'-4''$
• Determine K_2 for Roof Level: (Table 6-3)
 $K_2 = .92$ 1.01
 $K_2 = .92$ 1.01
 $K_2 = .85$.85
 $I = 1.15$ (Category III) (Table 6-1)
 $g_2 = 18.05 p_2$ 20.47 psf
• Since To< 1 sec \rightarrow 6 = .85 (6.5.8.1)
* Assuming # stories/10 = $\frac{1}{10} = .6 = T_0$
• $G(p_1 = \pm .55)$ partially endered buildings (Fig. 6-5)
 $p = q.G(Cp - q_1)(G(Cp_1))$

Lateral System Analysis

Joseph S. Murray

- East/West Pressures (Figure 6-6) Windward Cp = . 8 Leeward Cp is a function of 4B $4/B = \frac{86.9}{275.3} = .316 - 56p = -.5$ · Elevation: 23 psf -18,2+psf WINGE 21.2 psf -16.81 psf 19.7 psf -15,6psf WINGB 177 -14 14,5 -11.5 14.2 -11.3 East Side West Side · Sample Calc (wind word) Le p=18.65 (185)(.8) - (18.63)(±:55) P= 22,94 psf Leeward Cp = -. 24 ·Elevation 5 -14.795F 23.9 psf -14.1 22.9 psf 21.2 -139 19.7 -12.1 WINGC WING B -10,9 17,7 -8.9 14.5 14.2 South North Site